The Asynchronous State in the Cerebral Cortex
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The magnitude of spiking correlations within a local cortical circuit is thought
to be set by the fraction of presynaptic inputs shared by neusns in the net-
work. Here we show that this is not the way activity is organied in balanced
recurrent networks of excitatory and inhibitory neurons. | nstead, the network
settles into an asynchronous state where spiking correlains are marginal de-
spite large amounts of shared input. Spontaneous fluctuatics in the activity
of the excitatory and inhibitory populations in this state accurately track each
other, generating negative correlations in the synaptic cuents which precisely
cancel the effect of shared input. In agreement with the thery, we validate ex-
perimentally that correlations are indeed marginal in the anesthetized rodent
cortex. Our results provide a theoretical foundation to a lage body of previous
work and suggest a re-examination of the constraints that ccuit architecture
impose on information processing.



Pairs of nearby cortical neurons share a significant fraaicheir pre-synaptic inputs, in part
due to the relatively large local connection probabilitytive cortex {—3). Temporal fluctua-
tions in the spiking activity of these shared inputs induo@selated fluctuations in the synap-
tic currents to their post-synaptic targets, leading toedated spiking4, 5). Since the typical
magnitude of spiking correlations measuredsivo (6—9) is similar the amount of correlation
produced by realistic amounts of shared input in feed-foammeetworks §, 10, 13, spiking cor-
relations have been assumed to reflect shared input, a hattf@ature of the cortical anatomy.
Although measured correlations are typically not too gr{@+9), they have a large impact on
the way information in the neural activity can be decoded tyrstream targetd @, 13. This
has lead to the suggestion that the anatomy of a corticaloraiccuit, through its effect on
spiking correlations, could severely limit the efficiendytioe whole organism for performing
sensory discrimination®(7, 19. It remains unknown, however, whether the intuitions gdin
in simple feed-forward networks extend to more realistaresnt architectures.

In a randomly connected recurrent network, pairs of neucamsbecome correlated gy
a direct connection (orange pair in Fig.14)) shared inputs (pink pair) an@i) non-shared
correlated inputs (blue pair). We first examine the effe¢hete different sources of correlation
for a pair of neurons receivinyy feed-forward excitatory£') inputs. The relationship between
the fraction of shared inpugsand the output correlatiaf,; is roughly linear with slope smaller
than one %, 10, 13 (Fig. 1B). In contrast, the relationship between the datiens between
inputsry,, andr,,, has initially a very high gain (Fig. 1C). This amplificatioocurs because
the correlation: of the two input currents is approximately equal to

CNp+Nrin (1)

whenp andr;, are small 15). Although this phenomenon can lead to a synchrony exphosio
(Fig. 1D), as observed in multi-layered feed-forward nekso(16), it can also have a po-
tentially strong desynchronizing effect when inhibitdry) pre-synaptic inputs are taken into
account, because positive correlations betwEeand I cells contribute negatively to the cur-
rent correlation: (Fig. 1E-F). In fact, we now show that in recurrent networkasyiral activity
self-organizes in a way in which the net effect of spikingretations orr is negative precisely
canceling the hardwired positive component alue to shared inputs.

We studied the simplest model of a recurrent, randomly-eotad network consistent with
the low firing rate and high temporal irregularity exhibitbg cortical neurons (Fig. 2A).
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Whereas a similar model had been previously analyzed irpiaese connectivity limit in which
neurons share no inputd?), we assume that connectivity in our networkdense i.e., the
probability of connectiom (equal to the mean fraction of shared input) takes a fixedsteal
value (e.g.p = 0.2 as in Fig. 2). The network consists of two populations\oexcitatory
and inhibitory binary neurons. Both types of neurons rexeixcitatory projections (with the
same probability) from an externa( X') population of N cells assumed, for simplicity, to fire
independently 18). Synaptic connections adrong i.e., although each neuron receives an
average number of inputs proportional}g the number of excitatory inputs needed to make
the cell fire is only proportional t§/ N (17). We developed an analytical theory that describes
the distribution of firing rates and correlations in the natkvin stationary conditionsl@). The
theory shows that, if inhibition is powerful and not too s)ake network settles into a stationary
state of low irregular firing resulting from a dynamic balarietween the large net excitatory
and inhibitory drives to the cells (Fig. 2B), as describeevprusly in sparse network47, 19.
Furthermore, the average correlation in the neuronal felcrgss the populationin this state

is very weak. In fact, if one considers networks of differeizes,- decreases in a way inversely
proportional to/N. (Fig. 2C white dots). In this type of network states, foripahlled asyn-
chronous 20), correlations are marginal in the sense that they do natgdmentally constrain
how well the average firing rate of the neuronal populationlwaestimated (Fig. S1).

Since the synaptic current to each cell consists of an @gcjtand an inhibitory component,
the average current correlation across cell pairsan be decomposed in three terms;, c¢;;
andcg;. In the asynchronous state in our network, the magnitudbesfd three terms is large
and does not decrease with(Fig. 2C, colored dots and Fig. 2 due to the amplification of
weak firing correlations (equation 1). How is it possibletthsynchronous firing co-exists with
strongly correlated input currents? The answer lies in thg the instantaneous activities of
the excitatory and inhibitory populations:;(t) andm;(t)) self-organize in the asynchronous
state. As shown in Fig. 2Dn,(t) tracksmg(t) with a small lag €1-Lag), and they both
closely follow the external instantaneous activity (¢). In larger networks, tracking becomes
more accurate, and it becomes perfect in the lardamit,

whereAr andA; are constants which depend on the network architectie Tracking occurs
because, when the connectivity is strong and dense, evemtak spontaneous fluctuations in
instantaneous activity, of ordéy+/N, are large enough to recruit inhibitory feedback. Thus,
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tracking reflects the constant suppression of small fluinatin the excitatory population by
inhibition. Tracking yields a nearly instantaneous batéabetween theé” and I current com-
ponents, a phenomenon that has been observed experimd@i&i23. We propose that it
should be present even in conditions of tonic firing, and itsatunctional role is to prevent
epileptic-like activity arising from a synchrony explosim the local circuit.

It is simple to show mathematically that tracking (equat®nis equivalent to the precise
cancellation of the three components of the average cucoerelation 24)

CEE+CII+20EI ~ 1/\/N (3)

The termcg is positive and contains both the effect of shared inputstaedorrelations be-
tweenF cells (equation 1), and similarly faf;;. Correlations betweeh and! cells generated
by tracking (Fig. 2E) lead to a large and negatiyg which results in the cancellation shown in
equation 3 (Fig. 2E and 2iB.

Even after the cancellation, the instantaneous curremelation ¢ is still larger than the
correlation in firingr (Fig. 2C). This is possible because the transformation éetvsynaptic
current and firing activity is not instantaneous: Since orsieffectively integrate their synaptic
input, the instantaneous correlatioms related to the area under the current cross-correlogram
over a window of the order of the neuron’s time-constdi®).( Since synaptic interactions are
strong, changes in the activity of only a fractiofiy/N of the cells are enough to produce a
noticeable change in synaptic input. This sets fheLag and the magnitude and width of
the total current cross-correlogram to be of that same madmiFig. 2E). The area under the
current cross-correlogram is thugN, as required for asynchronous firing (Fig. @F. This
mechanism, summarized in Fig. 2F, is a robust dynamical @anenon and does not require
fine-tuning of any network parameter. It constitutes thé $ietf-consistent description of neural
activity of an anatomically plausible recurrent corticactait. .

A signature of the asynchronous state described here ighaistribution of firing corre-
lationsr across pairs isvide, with a standard deviation. much larger than its meanfor large
networks ¢, decays only ag/+/N) resulting in similar numbers of positively and negatively
correlated pairs in the network (Fig. 2G). This is due to tet that the hard-wired sources of
correlation (i.e. the presence or absence of a direct coiondaetween two cells and variabil-
ity in the fraction of shared input) have a strong impact-off order1/v/N) and therefore
generate large heterogeneity from pair to pair.

We found that a similar mechanism to the one just describétkibinary network is also at
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work in more biologically plausible network of spiking nems. We simulated large networks
of randomly connected conductance-baseedgrate-and-firaneurons, with parameters chosen
SO as to produce a balanced state where neurons fired imggiglaared fractiorp = 0.2; Fig.
3A; (18)). We quantified spiking correlations using the correlatamefficient of the spike
countr in windows of 50 ms25). As in the binary network (Fig. 2G), the distributionofs
wide (Fig. 3B), with an extremely low average= 0.001. To determine whether a cancellation
between the components of the current correlation (equa&jaunderlied the small value of
7 observed, we injected different levels of DC current to pealirs in which we had disabled
the spiking mechanism. The range of current levels was ttjus isolate the EPSP- and the
IPSP-components near their respective reversal poterigia) 22, or combinations of EPSPs
and IPSPs at intermediate potentials. The correlationdmtvisolated EPSPs (green, Fig. 3C)
and between isolated IPSPs (red) was much larger than thedatcon measured at rest (i.e. no
injected current), due to a cancellation with the large asghitive correlation between EPSPs
and IPSPs (gold). Across the whole range of holding potkntiae minimum correlation was
achieved for the pairs measured at the restintg poteniigl 8D, solid black dot).

To investigate whether a similar phenomenon can occur iticabicircuitsin vivo, we an-
alyzed neuronal population recordings collected withcsiti microelectrodes in somatosen-
sory and auditory cortices of urethane-anesthetized i&)s (Results from both areas were
pooled together, as the analysis did not reveal significéfierences between them. Under ure-
thane, cortical activity displays spontaneous changetate filomologous to those seen during
sleep 26, 27). Alternations take place between an ‘activated’ stat@nitct activity resembling
REM (ACT, blue, Fig. 4A-B), and an ‘inactivated’ state chateaized by global fluctuations
in population activity (Up-Down transitions), resemblistpw-wave-sleep (INACT, red, Fig.
4B-C). During the ACT period, correlations were, on averagearkably small, and the cor-
relation histogram was wide, in agreement with the theory 0.0075; 46.6% of negatively
correlated f < 0) pairs (Fig. 4B). These values were typical of ACT state &ations across
different animals (across =11 recording sessions in 9 rats, medianaf 0.0053; [0.0024
: 0.0094] interquartile range; Fig. 4E). Across all 30,7 & recorded the ACT state,=
0.0052, and 47.05% had < 0. This behavior did not depend strongly on the time-scale at
which correlations were measured (Fig. S2). Although thamurrelatiorr in the ACT state
was systematically very low, in all experimemtsvas positive and significantly different from
zero p < 0.005 against a null hypothesis given by histograms of@ttesurrogates; Fig. 4E).
A considerable minority of both positive and negative clatiens were statistically significant



(compare blue and gray in Fig. 4B; Fig. 4F). Pairs with sigaifit and negative (positive)
correlations show clear troughs (peaks) in their crossetmgrams on average (Fig. 4B insets,
see Fig. S3 for individual examples). Finally, the coriielahistogram during the ACT state is
still wide even if one only considers neurons recorded irstime shank (Fig. S4). In contrast
to these results, during INACT periods, the distributiorofrelations- in similar populations
of neurons was consistently biased towards positive vdrmE®ss: =7 sessions in 5 rats the
median ofr was 0.0953, [0.088 : 0.109] interquartile range; Fig. 4CA€yoss all 18,916 pairs
in this condition,” = 0.096, and 8.96% had < 0. However, although the whole population
was co-modulated by the slow oscilation (resulting in thsifpge bias ofr), spiking was still
very weakly correlated, on average, during Up-stags: (removal of Down-states from the
recorded spike traind ) results in correlation histograms very similar to thosgrmythe ACT
state (median of = 0.0163, [0.0066 : 0.023] interquartile range; Fig. 4C-B)tHis condition,

7 =0.0136 across all 18,916 pairs, with< 0 in 44.93% of them.

Our findings establish that the dynamics of recurrent disau@sults in an active decorrela-
tion of the synaptic inputs to the neurons in the network.greament, theory, network simula-
tions, andn vivo population recordings all show that densely connectedahetrcuits display
extremely low spiking correlations on average. Why, thea,reise correlations such a com-
mon feature of neuronal recordings? First, cortical ctiscdb exhibit a variety of states with
temporally structured global fluctuations under some tygemesthesia or during quiet wake-
fulness 22, 26, 29-3p Although we have shown that spiking is also very weaklyelated
within periods of sustanined activity in a state with slowlggl fluctuations (Fig. 4D-F2Q)),
the population structure of spiking correlations in thesprece of punctuated activity fluctu-
ations @2, 30, 32 remains to be elucidated. More importantly, measuredetations might
reflect, not the way cortical circuits operate, but ratherioaomplete understanding of what
cortical circuits do. Neuronal activity, even in primarynsery areas, is often affected not only
by sensory stimuli but by cognitive and behavioral varialf88—35 which are of very difficult
experimental access. If these variables have a globalteffethe activity of the population
being monitored, failure to condition on their precise eatun every trial will lead to measure-
ments of positive correlations, even if all neurons are danthlly independent. Nevertheless,
recent data suggests that extremely weak correlationslsseobserved in evoked responses
from the visual cortex of awake behaving monke¥§)( If, as we are suggesting, cortical net-
works are endowed with the capacity of actively decornetatheir spiking activity, then the
cortical circuitry does not necessarily constitute anduaeble source of ‘noise’.
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Figure 1: Sources of correlation in a neural circuit. (A) Schematic illustration of three mech-
anisms that lead to correlations in a recurrent network: r&afisynaptic connection (orange
pair), shared inputs (pink pair), and non-shared corrélatputs (blue pair).(B) Correlation
coefficient of the synaptic current,(dashed), and output spikes,; (dots, count windowl

= 50 ms) as a function of the fraction of shared input&ach post-synaptic cell received 250
excitatory( E') Poisson spike trains. The correlatiois equal top. (C) Correlations: (dashed)
andr,,; (dots) as a function the input spike correlatignat fixedp = 0.2. Each cell receives
250 excitatory Poisson spike trains with correlatign(black) (18). Point marked with a cross
in (B) and (C) is identical. Adding an additional 60 inhibigd /) input spike trains with iden-
tical statistics and correlations decreases the gain leetwgeandr,; (gray). (D) Input raster
(top), synaptic current (middle) and membrane potentiait@m) of the post-synaptic pair for
the point marked (D) in panel (C). Many weakly correlateduts;, = 0.025) lead to strongly
correlated synaptic currents and output spik&9. Schematic illustration of the effect of pos-
itive input correlations-;, on the correlation of a pair of post-synaptic neurons. Catigns
betweenE inputs (green) or betweehinputs (red) lead to positive correlations. Correlations
betweenF and! inputs leads to negative correlatioiig) Same as (D) but for the point marked
(F) in panel (C).E and spikes and synaptic currents are shown separately in gretned
respectively. Correlations betweéhand/ inputs ¢, = 0.05) reduces the correlation of the
total synaptic input.
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Figure 2: Asynchronous activity in a binary recurrent network. (A) Network scheme show-
ing the connectivity between the excitatai¥ ), inhibitory (/) and external excitatoryX)
populations. B) Example current traces showing the balance between the éxgtatory and
inhibitory drives to a neuron. Dashed line represents tinlels (C) Population-averaged corre-
lation coefficients of the firing activityr( white), total currentd, black) and current components
for networks of different sized’. Dashed lines show/+/N and1/N scaling for comparison.
(D) Instantaneous population activities (transformed toares) for theE, I and X popula-
tions for show that tracking becomes more accurate witreasing/V. Instance of lag between
E and[ activities magnified in the inse{E) Population-averaged correlograms of the current
components. Top inset shows the decrease in magnitude diid efithe cross-correlogram of
the total current forV = 2048, 4096 and 8192. Bottom inset: offset of the correteietween

E and/ currents (arrowheads) quantified-Lag. Color code as in (C)F) Description of the
asynchronous self-consistent solutidr); asynchronous firing yields correlated current com-
ponentscrr andc;; (equation 1) whick(ii) are cancelled by strong negative correlations due
to tracking of spontaneous fluctuations (D), resulting taltourrent correlations of magnitude
and time-scale- 1/+v/N. (iii), integration of the total currents leads to asynchronotisigc

(G) The histogram of correlations for excitatory pairé & 4096) is wides, > 7.
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Figure 3: Cancelation of correlations in a recurrent network of spiking neurons (A) Raster
(top) of 500 excitatory (green) and inhibitory (red) newsaon a conductance-based integrate-
and-fire network. Bottom curves show tracking of instantarsepopulation activities (trans-
formed to z-scores, bin size 3 ms). Average firing rat&@nd/ cells were 1 and 3.6 spike/s,
respectively. (B) Histogram of spike count correlations in the network is widkack, count
window 50 ms). Histogram of jittered spike trains is alsowhdgray). (C) Average mem-
brane potential cross-correlograms of pairs in which thkirsgp mechanism was inactivated.
DC current was injected to isolate EPSPs (green) or IPSB}i(réoth cells, or EPSPs for one
cell and IPSPs for the other (gold). The black curve is fronnspat resting potential (which
were not injected any current{D) Peak height of the membrane potential cross-correlogram
as a function of the average holding membrane potential tbf beurons in the pair. Green and
red filled dots correspond to pairs held at the reversal abitibn and excitation and the black
filled dot corresponds pairs at rest.
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Figure 4: Marginal correlations in the activated cortex in vivo. (A) Raster (top) and instan-
taneous population activity (bottom) for a population o0 imultaneously recorded neurons
over a 5 s period of cortical activatiqB) Histogram of correlations of the population in (A)
for a single experiment (640 s of ACT) is wide. The white cuiszéhe histogram of the spike-
jittered ACT data (mean over 500 surrogate sets; gray sha#le @®nfidence intervall)).
Insets show average raw cross-correlograms of all nedyatiedt) and positively (right) signif-
icantly correlated (g0.01) pairs(C-D) Same as (A-B) for the same population of cells during
296 s of INACT. Black brackets at the top in (C) indicate DoStates. Dotted line, threshold for
Down-State detectiorl@). Histogram of correlations during INACT is biased towapdsitive
values (red). Removing Down-state periods from the datiasgly eliminates the positive bias
(orange).(E) Box-whisker plots showing the distribution of mean cortielas across experi-
ments for different conditions(F) Median fraction of significantly (g0.01) correlated pairs
(empty) and of significantly and negatively correlated p4solid) across experiments. Error
bars represent interquartile range.
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