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The magnitude of spiking correlations within a local cortical circuit is thought

to be set by the fraction of presynaptic inputs shared by neurons in the net-

work. Here we show that this is not the way activity is organized in balanced

recurrent networks of excitatory and inhibitory neurons. I nstead, the network

settles into an asynchronous state where spiking correlations are marginal de-

spite large amounts of shared input. Spontaneous fluctuations in the activity

of the excitatory and inhibitory populations in this state accurately track each

other, generating negative correlations in the synaptic currents which precisely

cancel the effect of shared input. In agreement with the theory, we validate ex-

perimentally that correlations are indeed marginal in the anesthetized rodent

cortex. Our results provide a theoretical foundation to a large body of previous

work and suggest a re-examination of the constraints that circuit architecture

impose on information processing.
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Pairs of nearby cortical neurons share a significant fraction of their pre-synaptic inputs, in part

due to the relatively large local connection probability inthe cortex (1–3). Temporal fluctua-

tions in the spiking activity of these shared inputs inducescorrelated fluctuations in the synap-

tic currents to their post-synaptic targets, leading to correlated spiking (4, 5). Since the typical

magnitude of spiking correlations measuredin vivo (6–9) is similar the amount of correlation

produced by realistic amounts of shared input in feed-forward networks (5,10,11), spiking cor-

relations have been assumed to reflect shared input, a hardwired feature of the cortical anatomy.

Although measured correlations are typically not too strong (6–9), they have a large impact on

the way information in the neural activity can be decoded by downstream targets (12,13). This

has lead to the suggestion that the anatomy of a cortical micro-circuit, through its effect on

spiking correlations, could severely limit the efficiency of the whole organism for performing

sensory discriminations (5, 7, 14). It remains unknown, however, whether the intuitions gained

in simple feed-forward networks extend to more realistic recurrent architectures.

In a randomly connected recurrent network, pairs of neuronscan become correlated by(i)

a direct connection (orange pair in Fig.1A),(ii) shared inputs (pink pair) and(iii) non-shared

correlated inputs (blue pair). We first examine the effect ofthese different sources of correlation

for a pair of neurons receivingN feed-forward excitatory(E) inputs. The relationship between

the fraction of shared inputsp and the output correlationrout is roughly linear with slope smaller

than one (5, 10, 11) (Fig. 1B). In contrast, the relationship between the correlations between

inputsrin, androut has initially a very high gain (Fig. 1C). This amplification occurs because

the correlationc of the two input currents is approximately equal to

c ∼ p + Nrin (1)

whenp andrin are small (15). Although this phenomenon can lead to a synchrony explosion

(Fig. 1D), as observed in multi-layered feed-forward networks (16), it can also have a po-

tentially strong desynchronizing effect when inhibitory(I) pre-synaptic inputs are taken into

account, because positive correlations betweenE andI cells contribute negatively to the cur-

rent correlationc (Fig. 1E-F). In fact, we now show that in recurrent networks,neural activity

self-organizes in a way in which the net effect of spiking correlations onc is negative, precisely

canceling the hardwired positive component ofc due to shared inputs.

We studied the simplest model of a recurrent, randomly-connected network consistent with

the low firing rate and high temporal irregularity exhibitedby cortical neurons (Fig. 2A).
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Whereas a similar model had been previously analyzed in the sparse connectivity limit in which

neurons share no inputs (17), we assume that connectivity in our network isdense, i.e., the

probability of connectionp (equal to the mean fraction of shared input) takes a fixed realistic

value (e.g.p = 0.2 as in Fig. 2). The network consists of two populations ofN excitatory

and inhibitory binary neurons. Both types of neurons receive excitatory projections (with the

same probabilityp) from an external(X) population ofN cells assumed, for simplicity, to fire

independently (18). Synaptic connections arestrong, i.e., although each neuron receives an

average number of inputs proportional toN , the number of excitatory inputs needed to make

the cell fire is only proportional to
√

N (17). We developed an analytical theory that describes

the distribution of firing rates and correlations in the network in stationary conditions (18). The

theory shows that, if inhibition is powerful and not too slow, the network settles into a stationary

state of low irregular firing resulting from a dynamic balance between the large net excitatory

and inhibitory drives to the cells (Fig. 2B), as described previously in sparse networks (17,19).

Furthermore, the average correlation in the neuronal firingacross the population̄r in this state

is very weak. In fact, if one considers networks of differentsizes,̄r decreases in a way inversely

proportional toN . (Fig. 2C white dots). In this type of network states, formally called asyn-

chronous (20), correlations are marginal in the sense that they do not fundamentally constrain

how well the average firing rate of the neuronal population can be estimated (Fig. S1).

Since the synaptic current to each cell consists of an excitatory and an inhibitory component,

the average current correlation across cell pairs,c, can be decomposed in three termscEE, cII

andcEI . In the asynchronous state in our network, the magnitude of these three terms is large

and does not decrease withN (Fig. 2C, colored dots and Fig. 2Fi), due to the amplification of

weak firing correlations (equation 1). How is it possible that asynchronous firing co-exists with

strongly correlated input currents? The answer lies in the way the instantaneous activities of

the excitatory and inhibitory populations (mE(t) andmI(t)) self-organize in the asynchronous

state. As shown in Fig. 2D,mI(t) tracksmE(t) with a small lag (EI-Lag), and they both

closely follow the external instantaneous activitymX(t). In larger networks, tracking becomes

more accurate, and it becomes perfect in the largeN limit,

mE(t) = AE mX(t) mI(t) = AI mX(t) (2)

whereAE andAI are constants which depend on the network architecture (18). Tracking occurs

because, when the connectivity is strong and dense, even thesmall spontaneous fluctuations in

instantaneous activity, of order1/
√

N , are large enough to recruit inhibitory feedback. Thus,
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tracking reflects the constant suppression of small fluctuations in the excitatory population by

inhibition. Tracking yields a nearly instantaneous balance between theE andI current com-

ponents, a phenomenon that has been observed experimentally (21–23). We propose that it

should be present even in conditions of tonic firing, and thatits functional role is to prevent

epileptic-like activity arising from a synchrony explosion in the local circuit.

It is simple to show mathematically that tracking (equation2), is equivalent to the precise

cancellation of the three components of the average currentcorrelation (24)

cEE + cII + 2cEI ∼ 1/
√

N (3)

The termcEE is positive and contains both the effect of shared inputs andthe correlations be-

tweenE cells (equation 1), and similarly forcII . Correlations betweenE andI cells generated

by tracking (Fig. 2E) lead to a large and negativecEI which results in the cancellation shown in

equation 3 (Fig. 2E and 2Fii ).

Even after the cancellation, the instantaneous current correlation c is still larger than the

correlation in firingr̄ (Fig. 2C). This is possible because the transformation between synaptic

current and firing activity is not instantaneous: Since neurons effectively integrate their synaptic

input, the instantaneous correlationr is related to the area under the current cross-correlogram

over a window of the order of the neuron’s time-constant (18). Since synaptic interactions are

strong, changes in the activity of only a fraction1/
√

N of the cells are enough to produce a

noticeable change in synaptic input. This sets theEI-Lag and the magnitude and width of

the total current cross-correlogram to be of that same magnitude (Fig. 2E). The area under the

current cross-correlogram is thus1/N , as required for asynchronous firing (Fig. 2Fiii ). This

mechanism, summarized in Fig. 2F, is a robust dynamical phenomenon and does not require

fine-tuning of any network parameter. It constitutes the first self-consistent description of neural

activity of an anatomically plausible recurrent cortical circuit. .

A signature of the asynchronous state described here is thatthe distribution of firing corre-

lationsr across pairs iswide, with a standard deviationσr much larger than its mean̄r for large

networks (σr decays only as1/
√

N) resulting in similar numbers of positively and negatively

correlated pairs in the network (Fig. 2G). This is due to the fact that the hard-wired sources of

correlation (i.e. the presence or absence of a direct connection between two cells and variabil-

ity in the fraction of shared input) have a strong impact onr (of order1/
√

N ) and therefore

generate large heterogeneity from pair to pair.

We found that a similar mechanism to the one just described inthe binary network is also at
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work in more biologically plausible network of spiking neurons. We simulated large networks

of randomly connected conductance-basedintegrate-and-fireneurons, with parameters chosen

so as to produce a balanced state where neurons fired irregularly (shared fractionp = 0.2; Fig.

3A; (18)). We quantified spiking correlations using the correlation coefficient of the spike

countr in windows of 50 ms (25). As in the binary network (Fig. 2G), the distribution ofr is

wide (Fig. 3B), with an extremely low averager̄ = 0.001. To determine whether a cancellation

between the components of the current correlation (equation 3) underlied the small value of

r̄ observed, we injected different levels of DC current to cellpairs in which we had disabled

the spiking mechanism. The range of current levels was adjusted to isolate the EPSP- and the

IPSP-components near their respective reversal potentials (21, 22), or combinations of EPSPs

and IPSPs at intermediate potentials. The correlation between isolated EPSPs (green, Fig. 3C)

and between isolated IPSPs (red) was much larger than the correlation measured at rest (i.e. no

injected current), due to a cancellation with the large and negative correlation between EPSPs

and IPSPs (gold). Across the whole range of holding potentials, the minimum correlation was

achieved for the pairs measured at the restintg potential (Fig. 3D, solid black dot).

To investigate whether a similar phenomenon can occur in cortical circuitsin vivo, we an-

alyzed neuronal population recordings collected with silicon microelectrodes in somatosen-

sory and auditory cortices of urethane-anesthetized rats (18). Results from both areas were

pooled together, as the analysis did not reveal significant differences between them. Under ure-

thane, cortical activity displays spontaneous changes in state homologous to those seen during

sleep (26, 27). Alternations take place between an ‘activated’ state of tonic activity resembling

REM (ACT, blue, Fig. 4A-B), and an ‘inactivated’ state characterized by global fluctuations

in population activity (Up-Down transitions), resemblingslow-wave-sleep (InACT, red, Fig.

4B-C). During the ACT period, correlations were, on average, remarkably small, and the cor-

relation histogram was wide, in agreement with the theory (r̄ = 0.0075; 46.6% of negatively

correlated (r < 0) pairs (Fig. 4B). These values were typical of ACT state correlations across

different animals (acrossn =11 recording sessions in 9 rats, median ofr̄ = 0.0053; [0.0024

: 0.0094] interquartile range; Fig. 4E). Across all 30,772 pairs recorded the ACT state,r̄ =

0.0052, and 47.05% hadr < 0. This behavior did not depend strongly on the time-scale at

which correlations were measured (Fig. S2). Although the mean correlation̄r in the ACT state

was systematically very low, in all experimentsr̄ was positive and significantly different from

zero (p < 0.005 against a null hypothesis given by histograms of jittered surrogates; Fig. 4E).

A considerable minority of both positive and negative correlations were statistically significant
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(compare blue and gray in Fig. 4B; Fig. 4F). Pairs with significant and negative (positive)

correlations show clear troughs (peaks) in their cross-correlograms on average (Fig. 4B insets,

see Fig. S3 for individual examples). Finally, the correlation histogram during the ACT state is

still wide even if one only considers neurons recorded in thesame shank (Fig. S4). In contrast

to these results, during InACT periods, the distribution ofcorrelationsr in similar populations

of neurons was consistently biased towards positive values(acrossn =7 sessions in 5 rats the

median of̄r was 0.0953, [0.088 : 0.109] interquartile range; Fig. 4C-E). Across all 18,916 pairs

in this condition,r̄ = 0.096, and 8.96% hadr < 0. However, although the whole population

was co-modulated by the slow oscilation (resulting in the positive bias ofr), spiking was still

very weakly correlated, on average, during Up-states (28): removal of Down-states from the

recorded spike trains (18) results in correlation histograms very similar to those during the ACT

state (median of̄r = 0.0163, [0.0066 : 0.023] interquartile range; Fig. 4C-E). In this condition,

r̄ = 0.0136 across all 18,916 pairs, withr < 0 in 44.93% of them.

Our findings establish that the dynamics of recurrent circuits results in an active decorrela-

tion of the synaptic inputs to the neurons in the network. In agreement, theory, network simula-

tions, andin vivo population recordings all show that densely connected neural circuits display

extremely low spiking correlations on average. Why, then, are noise correlations such a com-

mon feature of neuronal recordings? First, cortical circuits do exhibit a variety of states with

temporally structured global fluctuations under some typesof anesthesia or during quiet wake-

fulness (22, 26, 29–32). Although we have shown that spiking is also very weakly correlated

within periods of sustanined activity in a state with slow global fluctuations (Fig. 4D-F (28)),

the population structure of spiking correlations in the presence of punctuated activity fluctu-

ations (22, 30, 32) remains to be elucidated. More importantly, measured correlations might

reflect, not the way cortical circuits operate, but rather our incomplete understanding of what

cortical circuits do. Neuronal activity, even in primary sensory areas, is often affected not only

by sensory stimuli but by cognitive and behavioral variables (33–35) which are of very difficult

experimental access. If these variables have a global effect on the activity of the population

being monitored, failure to condition on their precise value on every trial will lead to measure-

ments of positive correlations, even if all neurons are conditionally independent. Nevertheless,

recent data suggests that extremely weak correlations are also observed in evoked responses

from the visual cortex of awake behaving monkeys (36). If, as we are suggesting, cortical net-

works are endowed with the capacity of actively decorrelating their spiking activity, then the

cortical circuitry does not necessarily constitute an irreducible source of ‘noise’.
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Figure 1: Sources of correlation in a neural circuit. (A)Schematic illustration of three mech-
anisms that lead to correlations in a recurrent network: A direct synaptic connection (orange
pair), shared inputs (pink pair), and non-shared correlated inputs (blue pair).(B) Correlation
coefficient of the synaptic current,c (dashed), and output spikes,rout (dots, count windowT
= 50 ms) as a function of the fraction of shared inputsp. Each post-synaptic cell received 250
excitatory(E) Poisson spike trains. The correlationc is equal top. (C) Correlationsc (dashed)
androut (dots) as a function the input spike correlationrin at fixedp = 0.2. Each cell receives
250 excitatory Poisson spike trains with correlationrin (black) (18). Point marked with a cross
in (B) and (C) is identical. Adding an additional 60 inhibitory (I) input spike trains with iden-
tical statistics and correlations decreases the gain betweenrin androut (gray). (D) Input raster
(top), synaptic current (middle) and membrane potential (bottom) of the post-synaptic pair for
the point marked (D) in panel (C). Many weakly correlated inputs (rin = 0.025) lead to strongly
correlated synaptic currents and output spikes.(E) Schematic illustration of the effect of pos-
itive input correlationsrin on the correlation of a pair of post-synaptic neurons. Correlations
betweenE inputs (green) or betweenI inputs (red) lead to positive correlations. Correlations
betweenE andI inputs leads to negative correlations.(F) Same as (D) but for the point marked
(F) in panel (C).E andI spikes and synaptic currents are shown separately in green and red
respectively. Correlations betweenE andI inputs (rin = 0.05) reduces the correlation of the
total synaptic input.
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Figure 2: Asynchronous activity in a binary recurrent network. (A) Network scheme show-
ing the connectivity between the excitatory(E), inhibitory (I) and external excitatory(X)

populations. (B) Example current traces showing the balance between the large excitatory and
inhibitory drives to a neuron. Dashed line represents threshold. (C) Population-averaged corre-
lation coefficients of the firing activity (̄r, white), total current (c, black) and current components
for networks of different sizesN . Dashed lines show1/

√
N and1/N scaling for comparison.

(D) Instantaneous population activities (transformed to z-scores) for theE, I andX popula-
tions for show that tracking becomes more accurate with increasingN . Instance of lag between
E andI activities magnified in the inset.(E) Population-averaged correlograms of the current
components. Top inset shows the decrease in magnitude and width of the cross-correlogram of
the total current forN = 2048, 4096 and 8192. Bottom inset: offset of the correlation between
E andI currents (arrowheads) quantifiesEI-Lag. Color code as in (C).(F) Description of the
asynchronous self-consistent solution:(i), asynchronous firing yields correlated current com-
ponentscEE andcII (equation 1) which(ii) are cancelled by strong negative correlations due
to tracking of spontaneous fluctuations (D), resulting in total current correlations of magnitude
and time-scale∼ 1/

√
N . (iii) , integration of the total currents leads to asynchronous activity.

(G) The histogram of correlations for excitatory pairs (N = 4096) is wide:σr ≫ r̄.
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Figure 3: Cancelation of correlations in a recurrent network of spiking neurons (A) Raster
(top) of 500 excitatory (green) and inhibitory (red) neurons in a conductance-based integrate-
and-fire network. Bottom curves show tracking of instantaneous population activities (trans-
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