Cell assembly dynamics of sparsely-connected inhibitory networks

David Angulo Garcia
Joshua D. Berke
Alessandro Torcini

Istituto dei Sistemi Complessi (ISC - CNR), Sesto Fiorentino, Italy
University of Michigan, Michigan, USA
Université d’Aix-Marseille - Institut de Neurosciences des Systèmes, France

Firenze
September 2015
1 Introduction
2 Modelling the striatum
3 Mimicking Experimental Results
4 Conclusions
1 Introduction

2 Modelling the striatum

3 Mimicking Experimental Results

4 Conclusions
1. Introduction

2. Modelling the striatum

3. Mimicking Experimental Results

4. Conclusions
Outline

1 Introduction

2 Modelling the striatum

3 Mimicking Experimental Results

4 Conclusions
Outline

1. Introduction
2. Modelling the striatum
3. Mimicking Experimental Results
4. Conclusions
Striatum and the Basal Ganglia

- Motor control
- Action Selection / Learning by Reward
- Diseases

Inhibitory
Excitatory
Dopamine

[Fino and Venance, 2010]
Striatum and the Basal Ganglia

- Motor control
- Action Selection / Learning by Reward
- Diseases
 - Parkinson
 - Huntington
 - Drug addiction

Inhibitory
Excitatory
Dopamine

[Fino and Venance, 2010]
Striatum and the Basal Ganglia

- Motor control
- Action Selection / Learning by Reward
- Diseases
 - Parkinson
 - Huntington
 - Drug addiction

Inhibitory
Excitatory
Dopamine

[Fino and Venance, 2010]
Striatum and the Basal Ganglia

- Motor control
- Action Selection / Learning by Reward
- Diseases
 - Parkinson
 - Huntington
 - Drug addiction

Inhibitory
Excitatory
Dopamine

[Fino and Venance, 2010]
Striatum and the Basal Ganglia

- Motor control
- Action Selection / Learning by Reward
- Diseases
 - Parkinson
 - Huntington
 - Drug addiction

Inhibitory
Excitatory
Dopamine
[Fino and Venance, 2010]
Striatum and the Basal Ganglia

- Motor control
- Action Selection / Learning by Reward
- Diseases
 - Parkinson
 - Huntington
 - Drug addiction

Inhibitory
Excitatory
Dopamine

[Fino and Venance, 2010]
Striatum and the Basal Ganglia

- Motor control
- Action Selection / Learning by Reward
- Diseases
 - Parkinson
 - Huntington
 - Drug addiction

Inhibitory
Excitatory
Dopamine

[Fino and Venance, 2010]
Striatum and the Basal Ganglia

- Motor control
- Action Selection / Learning by Reward
- Diseases
 - Parkinson
 - Huntington
 - Drug addiction

Inhibitory
Excitatory
Dopamine

[Fino and Venance, 2010]
Some Morphological Aspect of MSNs

- 90% Medium Spiny Neurons
- Sparse connectivity ~ 10
- Inhibitory (GABA) synapses
 - Weak $\sim 0.2 \text{ mV}$ (respect to the FS neurons)
 - Duration $\sim 20 \text{ ms}$

[Gertler et al., 2008]
[Tepper et al., 2004]
Some Morphological Aspect of MSNs

- 90% Medium Spiny Neurons
- Sparse connectivity ~ 10
- Inhibitory (GABA) synapses
 - Weak $\sim 0.2 \text{ mV}$ (respect to the FS neurons)
 - Duration $\sim 20 \text{ ms}$

[Gertler et al., 2008]
[Tepper et al., 2004]
Some Morphological Aspect of MSNs

- 90% Medium Spiny Neurons
- Sparse connectivity \sim 10%
- Inhibitory (GABA) synapses
 - Weak \sim 0.2 mV (with respect to the FS neurons)
 - Duration \sim 20 ms

[Gertler et al., 2008]
[Tepper et al., 2004]
Some Morphological Aspect of MSNs

- 90% Medium Spiny Neurons
- Sparse connectivity \sim 10%
- Inhibitory (GABA) synapses
 - Weak \sim 0.2 mV (respect to the FS neurons)
 - Duration \sim 20 ms

[Tepper et al., 2004]
[Gertler et al., 2008]
Some Morphological Aspect of MSNs

- 90% Medium Spiny Neurons
- Sparse connectivity \(\sim 10\% \)
- Inhibitory (GABA) synapses
 - Weak \(\sim 0.2 \text{ mV} \) (respect to the FS neurons)
 - Duration \(\sim 20 \text{ ms} \)

[Gertler et al., 2008]
[Tepper et al., 2004]
Some Morphological Aspect of MSNs

- 90% Medium Spiny Neurons
- Sparse connectivity ~ 10%
- Inhibitory (GABA) synapses
 - Weak ~ 0.2 mV (respect to the FS neurons)
 - Duration ~ 20 ms

[Gertler et al., 2008]
[Tepper et al., 2004]
Some Morphological Aspect of MSNs

- 90% Medium Spiny Neurons
- Sparse connectivity $\sim 10\%$
- Inhibitory (GABA) synapses
 - Weak ~ 0.2 mV (respect to the FS neurons)
 - Duration ~ 20 ms

[Tepper et al., 2004]
[Gertler et al., 2008]
Physiology

- Highly variable firing rate
- CV ISI > 1

[Miller et al., 2008]
Physiology

- Highly variable firing rate
- CV ISI > 1

[Miller et al., 2008]
Physiology

- Highly variable firing rate
- CV ISI > 1

[Miller et al., 2008]
Encoding Information

- Alternating activity of assemblies of neurons

[Carrillo-Reid et al., 2008]
Encoding Information

- Alternating activity of assemblies of neurons
- Families firing synchronously
- Inhibiting other families

[Carrillo-Reid et al., 2008]
Encoding Information

- Alternating activity of assemblies of neurons
 - Families firing synchronously
 - Correlated Firing
 - Inhibiting other families
 - Anti-correlated Firing

[Carrillo-Reid et al., 2008]
Encoding Information

- Alternating activity of assemblies of neurons
 - Families firing synchronously
 - Correlated Firing
 - Inhibiting other families
 - Anti-correlated Firing

[Carrillo-Reid et al., 2008]
Encoding Information

- Alternating activity of assemblies of neurons
 - Families firing synchronously
 - Inhibiting other families

[Carrillo-Reid et al., 2008]
Encoding Information

- Alternating activity of assemblies of neurons
 - Families firing synchronously
 - Correlated Firing
 - Inhibiting other families
 - Anti-correlated Firing

[Carrillo-Reid et al., 2008]
Encoding Information

- Alternating activity of assemblies of neurons
 - Families firing synchronously
 - Correlated Firing
 - Inhibiting other families
 - Anti-correlated Firing

[Carrillo-Reid et al., 2008]
Leaky Integrate-and-Fire (LIF) model

\[
\begin{align*}
\dot{v}_i &= a_i - v_i - \frac{g}{K} E_i \\
\dot{E}_i &= P_i - \alpha E_i \\
\dot{P}_i &= -\alpha P_i + \alpha^2 \sum_{n|t_n<t} C_{i,j} \delta(t - t_n)
\end{align*}
\]

- Excitatory Thalamic/Cortical inputs
- Inhibitory Post-Synaptic Potentials (IPSP) strength
- Inverse IPSP time decay
- Random sparse connectivity 5%
Leaky Integrate-and-Fire (LIF) model

\[
\begin{align*}
\dot{v}_i &= a_i - v_i - \frac{g}{K} E_i \\
\dot{E}_i &= P_i - \alpha E_i \\
\dot{P}_i &= -\alpha P_i + \alpha^2 \sum_{n|t_n<t} C_{i,j} \delta(t - t_n)
\end{align*}
\]

- Excitatory Thalamic/Cortical inputs
- Inhibitory Post-Synaptic Potentials (IPSP) strength
- Inverse IPSP time decay
- Random sparse connectivity 5%

5%
Leaky Integrate-and-Fire (LIF) model

\[
\begin{align*}
\dot{v}_i &= a_i - v_i - \frac{g}{K} E_i \\
\dot{E}_i &= P_i - \alpha E_i \\
\dot{P}_i &= -\alpha P_i + \alpha^2 \sum_{n|t_n<t} C_{i,j} \delta(t - t_n)
\end{align*}
\]

- Excitatory Thalamic/Cortical inputs
- Inhibitory Post-Synaptic Potentials (IPSP) strength
- Inverse IPSP time decay
- Random sparse connectivity 5%
Leaky Integrate-and-Fire (LIF) model

\[
\begin{align*}
\dot{v}_i &= a_i - v_i - \frac{g}{K} E_i \\
\dot{E}_i &= P_i - \alpha E_i \\
\dot{P}_i &= -\alpha P_i + \alpha^2 \sum_{n: t_n < t} C_{i,j} \delta(t - t_n)
\end{align*}
\]

- Excitatory Thalamic/Cortical inputs
- Inhibitory Post-Synaptic Potentials (IPSP) strength
- Inverse IPSP time decay
- Random sparse connectivity 5%
Choosing Optimal parameters

Q_0 metric

$Q_0 \equiv \langle CV \rangle_N \times \sigma(C(\nu_i, \nu_j)) \times n^*$

- Variability in the firing rate
- Interplay of correlated / anticorrelated activity
- Many Active neurons (WLC paradigm)
Choosing Optimal parameters

Q_0 metric

$Q_0 \equiv \langle CV \rangle_N \times \sigma(C(\nu_i, \nu_j)) \times n^*$

- Variability in the firing rate
- Interplay of correlated / anticorrelated activity
- Many Active neurons (WLC paradigm)
Choosing Optimal parameters

Q_0 \textit{metric}

$$Q_0 \equiv \langle CV \rangle_N \times \sigma(C(\nu_i, \nu_j)) \times n^*$$

- Variability in the firing rate
- Interplay of correlated / anticorrelated activity
- Many Active neurons (WLC paradigm)
Choosing Optimal parameters

\(Q_0 \) metric

\[Q_0 \equiv \langle CV \rangle_N \times \sigma(C(\nu_i, \nu_j)) \times n^* \]

- Variability in the firing rate
- Interplay of correlated / anticorrelated activity
- Many Active neurons (WLC paradigm)
Maximizing Q_0
Maximizing Q_0

![Graph showing σ^* vs. g with a peak at low/middle value of synaptic strength.](image)
Maximizing Q_0

Graphs showing the relationship between Q_0 and g, indicating a low/intermediate value of synaptic strength.

Graphs also show the relationship between $\langle CV \rangle$, $\sigma(C)$, and n^* with g, illustrating how these variables change as g increases.
Maximizing \mathcal{Q}_0

- Low/intermediate value of synaptic strength
- Long tailed synapses
Maximizing Q_0

- Low/intermediate value of synaptic strength
- Long tailed synapses

- Graphs showing the relationship between Q_0 and $1/\alpha$ (ms)
- Graphs showing the relationship between Q_0 and g
- Graphs showing the relationship between $\langle CV \rangle^2$, $\sigma(C)$, n^*, and g
Optimal Q_0 / Poissonian Network.

Two input encoding

Optimal Q_0: $1/\alpha = 20$ ms

Non-optimal Q_0: $1/\alpha = 2$ ms
Optimal Q_0 / Poissonian Network.

Two input encoding

Optimal Q_0: $1/\alpha = 20$ ms

Non-optimal Q_0: $1/\alpha = 2$ ms
Optimal Q_0 / Poissonian Network.

Two input encoding

Optimal Q_0: $1/\alpha = 20$ ms

Non-optimal Q_0: $1/\alpha = 2$ ms
Optimal Q_0 / Poissonian Network.

Two input encoding

Optimal Q_0: $1/\alpha = 20$ ms

Non-optimal Q_0: $1/\alpha = 2$ ms
Outline

1. Introduction
2. Modelling the striatum
3. Mimicking Experimental Results
4. Conclusions
<table>
<thead>
<tr>
<th>Experiment</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Striatum under NMDA (excitatory drive)</td>
<td></td>
</tr>
</tbody>
</table>
Striatum under NMDA (excitatory drive)

Experiment

Model
Striatum under NMDA (excitatory drive)

Experiment

Model
Striatum under NMDA (excitatory drive)

Experiment

Model
<table>
<thead>
<tr>
<th>Experiment</th>
<th>Model</th>
</tr>
</thead>
</table>
| With bicuculline (no inhibition) | }
With bicuculline (no inhibition)

Experiment

Model
With bicuculline (no inhibition)

Experiment

Model
Conclusions

• A simple model of LIF neurons is capable to reproduce the most significant aspects of the MSN dynamics
 • The new metrics Q_0 is able to measure the effect of the parameters in the model
 • The selected parameter values maximize Q_0
 • The dynamics of our network exhibit the same features of more complex models of the striatum [Ponzi and Wickens, 2013]
• We were able to reproduce at a qualitative extent some experimental finding [Carrillo-Reid et al., 2008]
• Preprint submitted to PLOS Comp. Biol. [Angulo-Garcia et al.,]
Conclusions

- A simple model of LIF neurons is capable to reproduce the most significant aspects of the MSN dynamics
- The new metrics Q_0 is able to measure the effect of the parameters in the model
- The selected parameter values maximize Q_0
- The dynamics of our network exhibit the same features of more complex models of the striatum [Ponzi and Wickens, 2013]
- We were able to reproduce at a qualitative extent some experimental finding [Carrillo-Reid et al., 2008]
- Preprint submitted to PLOS Comp. Biol. [Angulo-Garcia et al.,]
Conclusions

- A simple model of LIF neurons is capable to reproduce the most significant aspects of the MSN dynamics
- The new metrics Q_0 is able to measure the effect of the parameters in the model
- The selected parameter values maximize Q_0
- The dynamics of our network exhibit the same features of more complex models of the striatum [Ponzi and Wickens, 2013]
- We were able to reproduce at a qualitative extent some experimental finding [Carrillo-Reid et al., 2008]
- Preprint submitted to PLOS Comp. Biol. [Angulo-Garcia et al.,]
Conclusions

- A simple model of LIF neurons is capable to reproduce the most significant aspects of the MSN dynamics
- The new metrics Q_0 is able to measure the effect of the parameters in the model
- The selected parameter values maximize Q_0
- The dynamics of our network exhibit the same features of more complex models of the striatum [Ponzi and Wickens, 2013]
- We were able to reproduce at a qualitative extent some experimental finding [Carrillo-Reid et al., 2008]
- Preprint submitted to PLOS Comp. Biol. [Angulo-Garcia et al.,]
Conclusions

- A simple model of LIF neurons is capable to reproduce the most significant aspects of the MSN dynamics.
- The new metrics Q_0 is able to measure the effect of the parameters in the model.
- The selected parameter values maximize Q_0.
- The dynamics of our network exhibit the same features of more complex models of the striatum [Ponzi and Wickens, 2013].
- We were able to reproduce at a qualitative extent some experimental finding [Carrillo-Reid et al., 2008].

Preprint submitted to PLOS Comp. Biol. [Angulo-Garcia et al.,]
Conclusions

- A simple model of LIF neurons is capable to reproduce the most significant aspects of the MSN dynamics
- The new metrics Q_0 is able to measure the effect of the parameters in the model
- The selected parameter values maximize Q_0
- The dynamics of our network exhibit the same features of more complex models of the striatum [Ponzi and Wickens, 2013]
- We were able to reproduce at a qualitative extent some experimental finding [Carrillo-Reid et al., 2008]
- Preprint submitted to PLOS Comp. Biol. [Angulo-Garcia et al.,]
Angulo-Garcia, D., Berke, J. D., and Torcini, A.
Cell assembly dynamics of sparsely-connected inhibitory networks: a simple model for the collective activity of striatal projection neurons.
Manuscript submitted for publication.

Encoding network states by striatal cell assemblies.

Spike-timing dependent plasticity in the striatum.
Frontiers in synaptic neuroscience, 2.

Dichotomous anatomical properties of adult striatal medium spiny neurons.

Dysregulated information processing by medium spiny neurons in striatum of freely behaving mouse models of huntington’s disease.

Fast algorithm for detecting community structure in networks.

Optimal balance of the striatal medium spiny neuron network.

Gabaergic microcircuits in the neostriatum.
Thank you

1 Introduction

2 Modelling the striatum

3 Mimicking Experimental Results

4 Conclusions
Mean vs. Fluctuation Driven Activity

- Low g neurons are all active - Mean Driven
- By increasing g the number of active neurons n^* decreases
- n^* has a minimum
- The number of active neurons increases again at large g due to current fluctuations
Mean vs. Fluctuation Driven Activity

- Low g neurons are all active - Mean Driven
- By increasing g the number of active neurons n^* decreases
 - n^* has a minimum
- The number of active neurons increases again at large g due to current fluctuations
Mean vs. Fluctuation Driven Activity

- Low g neurons are all active - Mean Driven
- By increasing g the number of active neurons n^* decreases
- n^* has a minimum
- The number of active neurons increases again at large g due to current fluctuations
Mean vs. Fluctuation Driven Activity

- Low g neurons are all active - Mean Driven
- By increasing g the number of active neurons n^* decreases
- n^* has a minimum
- The number of active neurons increases again at large g due to current fluctuations
Computation capability

Principal Component analysis of the network firing response for three different inputs

- Black $\tau_\alpha = 20$ ms
- Red $\tau_\alpha = 2$ ms
Computation capability

Principal Component analysis of the network firing response for three different inputs

- Black $\tau_\alpha = 20$ ms
- Red $\tau_\alpha = 2$ ms
Pattern Separation

Dissimilarity in the firing response of the network when affecting a fraction \(f \) of the inputs

\[
d_f(t_m) = 1 - \frac{R^c(t_m) \cdot R^f(t_m)}{||R^c(t_m)|| \cdot ||R^f(t_m)||} - R(t) \text{ state vector of the instantaneous firing rates}
\]

- Black \(\tau_\alpha = 20 \text{ ms} \) – Red \(\tau_\alpha = 2 \text{ ms} \)
Chaos or not chaos?

Presence of weak chaos at optimal parameter values

- Contrary to what reported in Ponzi & Wickens, 2013
Chaos or not chaos?

Presence of weak chaos at optimal parameter values

- Contrary to what reported in Ponzi & Wickens, 2013
Chaos or not chaos?

Presence of weak chaos at optimal parameter values

• Contrary to what reported in Ponzi & Wickens, 2013
ISI Statistics

Slow synapses allows for a continuum of possible ISI

$CV > 1$
ISI Statistics

Slow synapses allows for a continuum of possible ISI
CV > 1
- Peaks in the percentage of neurons bursting within a time window are identified as Bursting Events (mean + 2 std).
- The indices of the neurons participating in the i^{th} event are recorded in a N dimensional binary vector $x_i : 1$ (0) if the neuron participate to the event (otherwise)
- The similarity between synchronized events are calculated as the normalized scalar product between x_i and x_j, thus defining the matrix R_s
- Optimal algorithm for clustering is applied to R_s to find the number of clusters [Newman, 2004]
• Peaks in the percentage of neurons bursting within a time window are identified as Bursting Events (mean + 2 std).
• The indices of the neurons participating in the i^{th} event are recorded in a N dimensional binary vector x_i: 1 (0) if the neuron participate to the event (otherwise)
• The similarity between synchronized events are calculated as the normalized scalar product between x_i and x_j, thus defining the matrix R_s
• Optimal algorithm for clustering is applied to R_s to find the number of clusters [Newman, 2004]
• Peaks in the percentage of neurons bursting within a time window are identified as Bursting Events (mean + 2 std).
• The indices of the neurons participating in the i^{th} event are recorded in a N dimensional binary vector $x_i : 1$ (0) if the neuron participate to the event (otherwise)
• The similarity between synchronized events are calculated as the normalized scalar product between x_i and x_j, thus defining the matrix R_s
• Optimal algorithm for clustering is applied to R_s to find the number of clusters [Newman, 2004]
• Peaks in the percentage of neurons bursting within a time window are identified as Bursting Events (mean + 2 std).
• The indices of the neurons participating in the i^{th} event are recorded in a N dimensional binary vector x_i: 1 (0) if the neuron participate to the event (otherwise)
• The similarity between synchronized events are calculated as the normalized scalar product between x_i and x_j, thus defining the matrix R_s
• Optimal algorithm for clustering is applied to R_s to find the number of clusters [Newman, 2004]